	V	/ersio	n No			R	OLL	NUM.	BER				WIERMEDIATE AND	\$E _C
	7	0.	9	1						-			Водно	TO THE PARTY OF TH
	0		0	0	0	0	(0	0	0	0			THUR HANDE	ECATO I
	1	1	1		1	1	(D (1	1	1			SLAMABAD	
	2	2	2	2	2	2	(2	2	2	2	A	01		
	3	3	3	3	3	3	(3	3 3	3	3	Answe	er Si	neet No	
	4	4	4	4	4	4	(4	4	4				
	(5)	(5)	5	(5)	(5)	(5)	(5 (5)	5	(5)	Sign.	of C	andidate	
	6	6	6	6	6	6	(3 6	6	6				
		7	7	7	7	7		7	7	7				
	8	8	8	8	8	8	(8	3 8	8	8	Sign.	of In	vigilator	AND ASSESSMENT OF CASES OF CAS
	9	9		9	9	9	(9 9	9	9				
Section – A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil. CHEMISTRY HSSC- SECTION – A (Marks 17) Time allowed: 25 Minutes													کریں۔ کاٹ کر دوبارہ کھنے کی اجازت نمیں۔	
Fill the relevant bubble against each question: بر سوال کے سامنے دیے گئے درست دائرہ کوپر کریں۔														
1.					n present in 500g , C/=35.5, O=16)	of	0	7.3×1	024	0	3.61×10 ²⁴	0	2.45×10 ²⁴	36.8×10 ²³
2.	MgS made Sulph	f. How from nur by	w mar 1 24 <i>g</i>	y gra of reac	h Sulphur to produce MgS can Mg with excession $Mg+S \rightarrow M$	be of	0	35g		0	56 <i>g</i>	0	58.3 <i>g</i>	○ 12 <i>g</i>
3.	Whic funct	h of ion?	the f	ollowi	ng is NOT a s	tate	0	Pressi	ıre	\bigcirc	Volume	0	Temperature	○ Work
4.					is $4 \times 10^{15} Hz$, the $626 \times 10^{-34} Js)$	n its	0	26.5×	$10^{-18}J$	0	26.5×10 ⁻¹⁹ J	0	26.5×10 ¹⁹ J	O 26.5×10 ¹⁸ J
5.	havin	g larg	e ator	nic ni	y's law, when me umber will be use roduce X-rays of:		0	Longe wavele		0	Low wave number	0	Shorter wavelength	O Low energy
6.		No. c ≡ <i>CH</i>		na ar	nd Pi bonds in Eth	nyne	0	2 Sign Pi bon	na and 3 ds	3 0	3 Sigma and 2 Pi bonds	0	5 Sigma and 3 Pi bonds	3 Sigma and 5 Pi bonds
7.	ldent angle		e spe	cies	with maximum b	ond	0	CH_4		0	NH ₃	0	H_2O	\bigcirc H_2S
8.	In lea	ad stor	age b	attery	electrolyte is:		0	30% <i>F</i>	<i>ICI</i>	\bigcirc	30% <i>HNO</i> ₃	0	30%H ₂ SO ₄	○ 30% <i>HBr</i>
9.	exoth temp	nermic eratur	react	ion, w syster	elier's Principle, ir hat should be dor n to obtain maxir ?	ne to	0	Kept L	.ow	0	Kept High	0	Kept Same	Temperature has no effect
10.	highe		te of		's law which one sion? (M. Wt, S		0	SO_2		0	SO_3	0	H_2S	○ SCl ₂

Electric current can pass through graphite in one direction but not through other direction. Allotropy Anisotropy Isotropy Anisotropy Anisotropy Anisotropy Anisotropy Anisotropy Anisotropy Anisotropy Anisotropy Isotropy Anisotropy		The state of the s													
13. Which of the following Concentration Units Molarity Molality $96 \frac{m}{v}$ $96 \frac{m}{v}$ 14. Which of the following will contain lowest OH_4 OH_5	11.	one direction but not through other direction		Allotropy	() -	Anisotrop	y	0	Isotrop	ру	C		norphi	sm
Which of the following will contain lowest \bigcirc CH_4 \bigcirc HF \bigcirc NH_3 \bigcirc H_2O 15. A solution of HCI having $pH = 4$ will be: \bigcirc $0.4M$ \bigcirc $4.0M$ \bigcirc $0.0001M$ \bigcirc $0.0004M$ $K_c = 0.04 \text{ at } 723K \text{ for following reaction}$ $PCl_{5(g)} \Longrightarrow PCl_{3(g)} + Cl_{2(g)}$ $K_p \text{ of the reaction will be:}$ where $(R = 0.082 \text{ atm } dm^3 \text{ mol}^{-1} K^{-1})$ In a mixture containing $44g$ each of CO_2 , SO_2 , SO_3 and CI_2 gases, which of the 17. following will have highest partial \bigcirc CO_2 \bigcirc CO_2 \bigcirc $CO_3 = 80$, $CI_2 = 10$ \bigcirc CI_2	12.	Which one is conductor but not mallable?	0	Iron	(0	Graphite		0	Silver		C) Cor	oper	
15. A solution of HCI having $pH = 4$ will be: $\bigcirc 0.4M$ $\bigcirc 4.0M$ $\bigcirc 0.0001M$ $\bigcirc 0.0004M$ $K_c = 0.04 \text{ at } 723K \text{ for following reaction}$ $PCl_{5(g)} \Longrightarrow PCl_{3(g)} + Cl_{2(g)}$ $K_p \text{ of the reaction will be:}$ $\text{where } (R = 0.082 \text{ atm } dm^3 \text{ mol}^{-1} K^{-1})$ In a mixture containing $44g$ each of CO_2 , SO_2 , SO_3 and Cl_2 gases, which of the 17. following will have highest partial $\bigcirc CO_2$ $\bigcirc SO_2$ $\bigcirc SO_3$ $\bigcirc Cl_2$ pressure according to Dalton's Law? (where molar masses $CO_2 = 44$, $SO_2 = 64$, $SO_3 = 80$, $Cl_2 = 71$) SUPPLEMENTARY TABLE Atomic No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 5 ymbol H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Symbol H He Li B	13.	Which of the following Concentration Units does NOT depends on Temperature?	, 0	Molarity	(О С	Molality		0	$\frac{v}{v}$) %-	$\frac{m}{v}$	
$K_{c} = 0.04 \text{ at } 723K \text{ for following reaction}$ $PCl_{5(g)} \Longrightarrow PCl_{3(g)} + Cl_{2(g)}$ $K_{p} \text{ of the reaction will be:}$ $\text{where } (R = 0.082 \text{ atm } dm^{3} \text{ mol}^{-1} K^{-1})$ $\text{In a mixture containing } 44g \text{ each of } CO_{2},$ $SO_{2}, SO_{3} \text{ and } Cl_{2} \text{ gases, which of the}$ $17. \text{ following will have highest partial } CO_{2} $ $\text{pressure according to Dalton's Law?}$ $\text{(where molar masses } CO_{2}=44, SO_{2}=64,$ $SO_{3}=80, Cl_{2}=71)$ $\text{SUPPLEMENTARY TABLE}$ $\text{Atomic No} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14.	Which of the following will contain lowest vapor pressure at 50°C?	t O	CH_4	(0	HF		0	NH ₃) H ₂	0	
16. $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$	15.	A solution of HCl having $pH = 4$ will be:	0	0.4 <i>M</i>	(0	4.0 <i>M</i>		0	0.000	1 <i>M</i>		0.0	004 <i>M</i>	
16. $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$		$K_c = 0.04$ at $723K$ for following reaction	1												
In a mixture containing $44g$ each of CO_2 , SO_2 , SO_3 and Cl_2 gases, which of the 17. following will have highest partial CO_2 CO_2 CO_3 Cl_2 pressure according to Dalton's Law? (where molar masses CO_2 =44, SO_2 =64, SO_3 =80, Cl_2 =71)	16.	$PCl_{5(g)} \Longrightarrow PCl_{3(g)} + Cl_{2(g)}$	0	0.04	(0	2.37		0	0.64) 0.4	-0	
SO_2 , SO_3 and Cl_2 gases, which of the 17. following will have highest partial \bigcirc CO_2 \bigcirc SO_2 \bigcirc SO_3 \bigcirc Cl_2 pressure according to Dalton's Law? (where molar masses CO_2 =44, SO_2 =64, SO_3 =80, Cl_2 =71)		where ($R = 0.082 atm dm^3 mol^{-1} K^{-1}$)	34												VE E
17. following will have highest partial \bigcirc CO_2 \bigcirc SO_2 \bigcirc SO_3 \bigcirc Cl_2 pressure according to Dalton's Law? (where molar masses CO_2 =44, SO_2 =64, SO_3 =80, Cl_2 =71) SUPPLEMENTARY TABLE Atomic No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Symbol H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca		In a mixture containing $44g$ each of CO_2	,												
SUPPLEMENTARY TABLE Atomic No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Symbol H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca	17.	following will have highest partia pressure according to Dalton's Law? (where molar masses CO ₂ =44, SO ₂ =64	1 (CO_2		0	SO ₂		0	SO ₃		C) Cl ₂	:	
37 37 37 37 37 40 39 40	Ato	PLEMENTARY TABLE mic No 1 2 3 4 5 6	,												7.072
			100					S 228			32	35.5	40	39	40

----1HA-I 2209-7091 (HA) -----

ROLL NUMBER													

CHEMISTRY HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B and C: 68

NOTE: Answer any FOURTEEN parts from Section 'B' and attempts any TWO questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION - B (Marks 42)

Answer any FOURTEEN parts from the following. All parts carry equal marks. Q. 2

 $(14 \times 3 = 42)$

- Why actual yield is always less than theoretical yield? Write three arguments. (i)
- (ii) $C + O_2 \longrightarrow CO_7$

 $\Delta H = -393 \, kJ \, / \, mol$

 $H_2 + \frac{1}{2}O_2 \longrightarrow H_2O$

 $\Delta H = -285.8 \, kJ \, / \, mol$

 $CH_3COOH + 2O_2 \longrightarrow 2CO_2 + 2H_2O$

 $\Delta H = -875 \, kJ \, / \, mol$

Deduce the value of standard enthalpy of formation of acetic acid.

- (iii) How X-rays are produced? Discuss according to Moseley's law.
- By using formula of radius derived by Bohr, how it can be proved that size of ${}^4_2He^{1+}$ is larger than (iv) that of ${}_{3}^{6}Li^{2+}$? $r = \frac{\varepsilon_{o}h^{2}n^{2}}{}$
- Write three defects of valence bond theory? (v)
- Give two causes for deviation of gases from ideality. (vi)
- (vii) Write three differences between Sigma and Pi bond.
- What is meant by molar heat of fusion and molar heat of vaporization? Why ΔH_{ν} is always greater (viii) than ΔH_c ?
- Boiling point increases continuously in hydrides of group IV from CH_4 to SnH_4 with the increase in (ix)atomic size of central atom. Which forces are responsible for this regular change and why?
- Describe briefly Lattice energy in two ways with suitable example. (x)
- Briefly explain with chemical equation, why: (xi)
 - $NH_{4}Cl$ is acidic
- NaCl is neutral (ii)
- CH,COONa is basic (iii)
- Consider the following reaction $H_2 + Br_2 \Longrightarrow 2HBr$ if concentrations of H_2 , Br_2 and HBr are 0.5M , (xii) 0.3M and 0.1M respectively at equilibrium then calculate value of K_c .
- How relative lowring of vapour pressure helps to determine the molar mass of non-volatile and non-(xiii) electrolyte solute in a dilute solution? Relationship of relative lowring of V.P is $\frac{\Delta P}{P^0} = X_2$
- What is freezing point of a solution containing 30g of Sucrose $C_{12}H_{22}O_{11}$ dissolved in 50g of (xiv) water? ($K_{fof water} = 1.86$)
- Differentiate between ΔE and ΔH . Under what conditions ΔH and ΔE will be equal? (XV)
- Briefly describe the construction and working of standard hydrogen electron (SHE). (xvi)
- What is galvanizing? Why is it called sacrificial corrosion? (xvii)
- (xviii) Write thermochemical equation for the following:
 - Standard enthalpy of formation of CH_3COCH_3 is -248.1kJ/mol(a)
 - Standard enthalpy of combustion of C_8H_{18} is -5512kJ/mol(b)
 - Standard enthalpy of atomization of Cl_2 is +121kJ/mol
- What is bond energy? Why bond energy of HF is greater than that of H-I? (xix)
- Enlist two factors that affect London Dispersion Forces. Why London Dispersion Forces are stronger in (xx)Radon (Rn) than Helium (He) in noble gases?

SECTION - C (Marks 26)

Note: Attempt any TWO questions. All questions carry equal marks.

 $(2 \times 13 = 26)$

(07)

- How catalyst increases the rate of reaction? Explain its action with suitable example along with the Q. 3 a. (07)graph. Describe the types of Catalysis.
 - Derive Vander Wall's equation for real gases and also derive the units of 'a' an 'b'. (06)b.
- (06)Q. 4 Balance the following redox equations with given methods: a.
 - $P + HNO_3 + H_2O \longrightarrow H_3PO_4 + NO$ Oxidation number method

Ion electron method (in acidic media)

- $Cr_2O_7^{-2} + Cl^- \longrightarrow Cr^{+3} + Cl_2$ Explain buffer, its types and composition and buffer action with one suitable example. b.
- Q. 5 Explain the quantitative aspects of freezing point depression and prove that ΔT_{ℓ} is inversely a. proportional to molar mass of solute. (07)
 - (i) A small piece of Al metal having a volume of 2.50cm3 is reacted with excess of HCl. What is the b. weight of H_2 liberated? The density of Al is $2.70g cm^{-3}$. $2Al + 6HCl \longrightarrow 2AlCl_3 + 3H_2$
 - (ii) In a particular experiment 0.3g of H_2 gas was obtained. Calculate percentage yield of this reaction.

SUPPLEMENTARY TABLE

OCI I LIMIT	TITE	TAT I	LULI	4																
Atomic No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Symbol	Н	He	Li	Be	В	C	N	0	F	Ne	Na	Mg	Al	Si	P	S	C1	Ar	K	Ca
Mass No	1	4	7	9	11	12	14	16	19	20	23	24	27	28	31.	32	35.5	40	39	40